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SOLUTION OF THE INVERSE 

BOUNDARY-VALUE PROBLEM 

OF THE THEORY OF SHELLS 

V. M. Bogomol'nyi UDC 539.3 

A numerical solution of the boundary-value problem of the theory of shells with an unknown free 
boundary is performed using Galerkin's method. An analytical solution of the inverse problem is obtained using 
the potential theory method. The calculation results for the unknown domain of solution of the Helmholtz 
type basic equation for a spherical shell that is unclosed in two coordinates are compared with the calculation 
data of the finite-element method. 

The linear theory of plates and cylindrical shells [1--4] is reduced to the solution of Helmholtz's equation; 
therefore, the obtained solutions can be used, in particular, for selecting the shape of holes (or reinforcements) 
in shells of rotation that provides minimum stress concentration [5]. 

The numerical solution of boundary-vMue problems with an unknown free boundary involves some 
computational difficulties [6-8]; in this paper we show the possibility of simplifying numerical solution by 
using an analytical approximate method. 

Solutions of the inverse problems of the theory of elasticity are presented in [9, 10]. The maximum 
size of the domain of solution of the hyperbolic equation of a toroidal shell was determined in [11] using the 
method of characteristics. A similar problem is solved in this paper for an elliptic domain. 

1. Let us consider a segment of a spherical shell that is bounded by the coordinates 0 ~ ~0 ~ 2~r and 
01 ~ 0 ~ 02 (qa and 0 are the angular coordinates in the circumferential and meridional directions). The 
force P= is applied through a moving rigid disc to the edge 0a and the edge 02 is rigidly fixed and remains 
immovable (Fig. 1). The edges qo = 0 and qo ..~ 21r are free from external stresses. 

The zone of influence of the edge ~a = 0 (which determines the domain of solution of the basic equation 
of the shell) is unknown and is found using the method of integral equations. Since the moment stressed state 
of the shell changes faster than the tensile stresses, we use the moment-free theory of shells to determine the 
unknown domain of solution. The basic equation has the form [12] 

OU] 1 1 0 [ /~  sin 0 0 2 U = 0  ' (1.1) 
R1 R2 sin 0 00 [ R1 0"0 + R2 sin 2 0 0~0 ----~ 

where U = -T2R1 sin 2 0; T2 is the tensile stress in the circumferential direction; R1 and R2 are the radii of 
the main curvatures of the median surface in the meridional and circumferential directions. 

For small angles O, assuming that sin 0 ~ 0 and cos 0 .~ 1, we transform (1.1) into the equation 

02W 02W 9W=O, W = T e  sM2 ~ = l n 0 .  (1.2) 
O# - - -T  + O~ - - T  - 4 

We specify the boundary conditions with allowance for the continuity and axial symmetry of the 
stressed state outside of the zone of influence of the free edge ~ = 0: 

W __0=0, WL-=f(~) ,  0--~ L=O. (1.3) 
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Here L is the unknown domain boundary of solution of Eq. (1.1); f(/3) is a function that  is known from the 
calculation of the shell closed in ~o. Figure 2 shows the function f(/3) that  is calculated [13] for shell parameters 
0.25 ~< 0 ~< 0.35 rad, R1 = 382 ram, h = 0.1 mm, E = 2.1.10 MPa (modulus of elasticity), # = 0.3 (Poisson's 
ratio), and P = 9.8 N using the standard computer program for shells. 

Introducing the function (I)(/3, ~o), we transform Eq. (1.2) into the form 

d2 f 9 
02r  02r 9 ~ = F(13), r V) = f(13) - W(13,~o), F(fl~ = dfl 2 ~ f .  (1.4) 
Off -----i + O~o ----~ 4 " - -  

We approximate the domain of solution of Eq. (1.4) by a set of rectangular elements with width dj 
and height aj (j = 0, 1, 2, 3 , . . . ,  n) (Fig. 3). To the left of the cross section I-I in Fig. 3 there is a semi-infinite 
band j = 0. The unknown part of the boundary of the domain of solution of (1.4) is a stepwise broken line L. 

We write the boundary conditions (1.3) for Eq. (1.4), taking into account the change of variables: 

r = f O ) ,  r = 0; ( 1 . 5 )  

at the sides of the rectangular elements parallel to the ~o-axis, we set 

de  
- -  = 0. ( 1 . 6 )  
d~o 

In mathematical  description, the boundary-value problem (1.4)-(1.6) is analogous to the problem of 
propagation of electromagnetic waves in a closed system of rectangular waveguides. A source of disturbance 
is assigned at the boundary a0 of the first (j = 1) rectangle in the waveguide cross section, which is shown 
by a broken line in Fig. 3. The propagation and reflection of waves in the ~o-direction are considered [14]. 

The solution of the boundary-value problem (1.4)-(1.6) for each element has the form [14-16] 

sin nTr (x -~ + ) 
(I)(z,~) = ~ F~ aj (1.7) 

n=0 3't sinh 71dj ' 

n~r aj 
F j  _ ~n - - ( x  + - ~ ) q d x d %  (1.8) 2aj / f SJ(x)Sin aj 

a(~,~,) 

where x is a new variable chosen so that  the ~-axis is the symmetry  axis of the rectangular elements; 

- r  2 ; r 2 = - -  ( 1 = 0 , 1 , 2 ,  . , n ) ;  
"71= k k al / 4 "" 
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the Neumann number  is 

the Green's function is 

sj(:~)- d2/~ 
dx 2 

B3"a are unknown coefficients; 

1 w h e n n = 0 ,  
r  2 w h e n n # 0 ;  

(o,) 
- -  "4- r2foj(x),  foj(x) = ~_~ Bja sin c~Tr x + ; (1.9) ,~=l aj T 

cosh 7t(d - ~) cosh 7/~o ~ when ~,0 < ~, 
= cosh 'T l~coshTt (d-  ~o ~ when ~o ~ > ~; 

is the conjunction coordinate of the rectangular elements; ~o ~ is the coordinate of the integration plane of 
the influence function which characterizes the electromagnetic fields in individual rectangular elements. The 
function q(~o ~ ~) is found on the basis of the theorem of equivalence; the actual electromagnetic field sources 
are replaced by the equivalent surface currents, and integral equations of the type (1.8) are formulated [16]. 

In the cross section I-I (Fig. 3) the solution of (1.7) has the form 

V(x, n) = 1 ~7" F(~ sin n~r e •  (1.10) m - -  2 : - I -  
"frO n = 0  a 0  

2ao :~o(x) sin --ao x + . 
V(~,v) 

Here So(z) = Sj(x)  + sob(x); Sob(z) is determined by the expression 

d2 fob(x) 3 ilr (x ao 
S~o( Z) dx------ T -  + r2 fbo(X); fbo(X ) = ~ A i s i n  , + -~-); 

i = 1  a 0  

fo(x) is the expansion of the function f(/3) given in the boundary conditions (1.5) in terms of sines; the upper 
and lower signs in the exponent refer to ~o < ~ and ~ > ~, respectively. 

From the conjunction conditions of solutions (1.7), for each rectangular element in the cross sections 
I-I and II-II,  we have the following system of equations (the other equations are of similar form and are 
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TABLE 1 

Circumferential 
coordinate, rad 

0.196 : 
0.392 
0.588 
0.794 
0.98 
1.078 

MPa 

-0.485 4.94 
-0.729 5.058 
-0.805 5.082 
-0.829 5.089 
-0.831 5.096 
-0.831 5.098 

therefore not presented): 
OO OO 

n = O  n----0 

n = 0  n = O  

(A is an infinitesimal small increment of the coordinate ~o). 

(cross section I-I), 

(cross section II-II) 

(1.12) 

With given aj and dj, after integrating Eqs. (1.12), we obtain a system of algebraic equations from 
which the coefficients Bj,~ are found. 

The first boundary condition (1.5) is the source of disturbance. The minimum condition of the field 
of a "reflected wave" determines the zone of influence of the source and corresponds to the minimum of the 
integral J0: 

ao/~ d~ / [  ] Jo = ~ x  2 (Bo.()  + r2Bo.~ dz, ~ = sin ar 
ao 

-ao/2 
Setting a successive set of aj and dj values beginning from the maximum possible values and performing 

their discrete reduction with step A _-- 0.01, we calculate the integral J0. From the condition of minimum of 
J0 we find that the maximum size of the solution domain ~o0 for the given shell parameters is ~o0 = 0.74 rad. 

As follows from (I.10), when r 2 is negative the solution decays exponentially in the ~o direction. In 
this case the derivative d~/d~o at the part (ab) of the boundary (Fig. 3) is practically equal to zero, which 
corresponds to the condition of axial symmetry and continuity of the stressed state of the shell of rotation 
outside of the zone of influence of the free edge ~o = 0. The exponent also depends on the number of terms 
of the series (1.10). It follows from the calculations that the series (1.10) decreases rapidly with increasing 
number of terms, and only the first three terms can be used with sufficient accuracy for practical applications. 

Calculations showed that a 2-fold increase in the function f (~ )  (without change in its form) in the 
first boundary condition (1.5) produces only a 14% increase in the maximum size of the unknown domain of 
solution. Calculations for a spherical shell with the above parameters and the same loading conditions were 
carried out using the finite-element method. The numerical calculation results, i.e., the tensile stresses q and 
o2 in the central part of the segment of the spherical shell, are given as a function of the coordinate ~o in 
Table i. 

As follows from Table i, the zone of influence of the free edge ~o = 0 is bounded by the coordinate 
~og 1) = 1.03 rad. 

2. We find the unknown domain of solution of Eq. (1.1) by hydrodynamic analogy. The calculation of 
the stressed state of the shell is reduced to the Laplace equation, and the theory of axisymmetric potential 
flows is also determined by this equation. The possibility of applying hydrodynamic analogy to the solution 
of problems of the theory of elasticity was supported experimentally by the works of R. Bowde [17, p. 88]. 

For a segment of a spherical shell for which R1 = R2, we have sin0 ~ 0 and cos0 = 1. Then Eq. (1.1) 
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Fig. 4 

becomes 

~202U OU O2U 
~ - ~ - + 0 N + ~ - ~ 2  = 0 .  (2-1/ 

Introducing the change 8 = eY, from (2.1) we obtain 

O2U O~U 
0--- T + = o. (2.2) 

Let us consider the case of superposition of two potential flows that are calculated using the Laplace 
equation: uniform rectilinear flow and flow with a "point" radial source. The velocity of effusion from the 
"point" source is Ur = rn / r  (the constant m characterizes the effusion intensity and r is a coordinate). The 
complex potential of the total flow is written as [18] 

w = r + i r  = - U z -  mlogz ,  (2.3) 

where (I) is the velocity potential, r is the stream function, U is the velocity of the laminar rectilinear flow; 
z = ~ + iv = r ia (Fig. 4). The derivative of Eq. (2.3) is d w / d z  = - ' U  - m / z .  

The critical point at which the velocity of the total flow equals zero is found as the roots of the equation 
d w / d z  = 0 and the equality z = - m / U  determines the point at which the velocities of two flows are equal 
(point A in Fig. 4). 

The stream function is of the form [18] 

~b = - U y  - m a  = - U y  - m arctan Y. (2.4) 

By virtue of the symmetry  ~vith respect to the ~-axis we consider only half of the total flow for y t> 0. 
The angle a is reckoned from the positive direction of the ~-axis (Fig. 4), on the negative part of the ~-axis 
for a = ~r y = 0, and for this part of the total flow it follows from (2.4) that r = -mzr  and the equation of 
the streamline branching at point A is representable as (Fig. 4) 

- ~ m  = - ~ y  - ms .  (2.5) 

Equation (2.5) involves the negative part of the ~-axis up to point A and curve AB (Fig. 4). From (2.51, 
we see that for a --+ 0 the coordinate y --~ m~r/-U = yrn, i.e., curve AB is bounded by the asymptote ym = const. 
In view of the symmetry of the streamline AB with respect to the ~-axis there is a second asymptote y = -ym.  
Knowing the coordinate z = - m / U  of the critical point A, from (2.4), w e  find OA= ym/~r and the equation 
of curve AB (~b = const) 

1 1 Try 
- tan - - .  (2.6) 

y yrn 

It follows from (2.6) that y l /Ym = 6.32 when Y/Ym = 0.95. 
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3. C o n c l u s i o n s .  

(1) From the numerical solution by Galerkin's method it is obvious that the domain of solution of 
Eq. (1.2) is bounded by an oval contour with a ratio of semi-axes of 4.48 : 1, while according to the data of 
calculation of the sector of the spherical shell by the finite-elements method this ratio is 6.24 : 1. This difference 
can be explained by the fact that the basic equation (1.2) is obtained following the approximate moment- 
free theory, while the finite-element method takes into account bending moments, and also by the fact that 
the approximation of the unknown domain of solution (1.2) by the system of rectangular elements and the 
singularities of conjunction of the solutions for individual rectangular elements at angular points introduce 
a systematic error in numerical realization of the algorithm. An increase in the number of rectangles does 
not eliminate this error. Therefore, the results of approximate analytical solution by means of hydrodynamic 
analogy, in which the unknown boundary is given by a smooth curve, are closer to the calculation results 
using the finite-element method, and an estimate of the maximum size of the unknown domain of solution 
can be obtained from Eq. (2.6). 

(2) A 2-3-fold increase in the boundary value of the function f(~) in boundary condition (1.5), which 
characterizes the influence of the external load, produces, respectively, a 14% and 16% increase in the solution 
domain. These results are confirmed in [19], in which a plate on an elastic foundation with external force P 
applied to the center of the plate is considered and an increase in the force P is shown to bring about no 
change in the domain of its influence. 
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